How Bearings Work
In order to serve all these functions, bearings make use of a relatively simple structure: a ball with internal and external smooth metal surfaces, to aid in rolling. The ball itself carries the weight of the load—the force of the load’s weight is what drives the bearing’s rotation. However, not all loads put force on a bearing in the same manner. There are two different kinds of loading: radial and thrust.A radial load, as in a pulley, simply puts weight on the bearing in a manner that causes the bearing to roll or rotate as a result of tension. A thrust load is significantly different, and puts stress on the bearing in an entirely different way. If a bearing (think of a tire) is flipped on its side (think now of a tire swing) and subject to complete force at that angle (think of three children sitting on the tire swing), this is called thrust load. A bearing that is used to support a bar stool is an example of a bearing that is subject only to thrust load.
Many bearings are prone to experiencing both radial and thrust loads. Car tires, for example, carry a radial load when driving in a straight line: the tires roll forward in a rotational manner as a result of tension and the weight they are supporting. However, when a car goes around a corner, it is subject to thrust load because the tires are no longer moving solely in a radial fashion and cornering force weighs on the side of the bearing.
Types of Bearings
There are numerous different kinds of bearings that are designed to handle radial load, thrust load, or some combination of the two. Because different applications require bearings that are designed to handle a specific kind of load and different amounts of weight, the differences between types of bearings concern load type and ability to handle weight.Ball Bearings
Ball bearings are extremely common because they can handle both radial and thrust loads, but can only handle a small amount of weight. They are found in a wide array of applications, such as roller blades and even hard drives, but are prone to deforming if they are overloaded.Roller Bearings
Roller bearings are designed to carry heavy loads—the primary roller is a cylinder, which means the load is distributed over a larger area, enabling the bearing to handle larger amounts of weight. This structure, however, means the bearing can handle primarily radial loads, but is not suited to thrust loads. For applications where space is an issue, a needle bearing can be used. Needle bearings work with small diameter cylinders, so they are easier to fit in smaller applications.Ball Thrust Bearings
These kinds of bearings are designed to handle almost exclusively thrust loads in low-speed low-weight applications. Bar stools, for example, make use of ball thrust bearings to support the seat.Roller Thrust Bearings
Roller thrust bearings, much like ball thrust bearings, handle thrust loads. The difference, however, lies in the amount of weight the bearing can handle: roller thrust bearings can support significantly larger amounts of thrust load, and are therefore found in car transmissions, where they are used to support helical gears. Gear support in general is a common application for roller thrust bearings.Tapered Roller Bearings
This style of bearing is designed to handle large radial and thrust loads—as a result of their load versatility, they are found in car hubs due to the extreme amount of both radial and thrust loads that car wheels are expected to carry.
Reference: